

E-ISSN: 2663-2268 P-ISSN: 2663-225X

www.surgicalnursingjournal.com IJARMSN 2025; 7(2): 205-214

Received: 07-08-2025 Accepted: 10-09-2025

P Vanaia

Nursing Tutor, College of Nursing, Madras Medical College, Chennai, Tamil Nadu, India

C Pearl Privadharshini

Professor, Sri Venkateshwaraa Nursing College, Sri Venkateshwaraa University, GNT Road, Chennai, Tamil Nadu, India

Dhilpe Sheetal Mahesh

Assistant Professor, Arogyam Nursing College, Roorkee, Uttarakhand, India

V Nirosha

Professor Cum HOD, Department of Mental Health Nursing, Vivekanandha College of Nursing, Elayampalayam, Tiruchengode, Namakkal, Tamil Nadu, India

V Gayathri

Associate Professor Cum HOD, Department of Medical Surgical Nursing, Vivekanandha College of Nursing, Elayampalayam, Tiruchengode, Namakkal, Tamil Nadu, India

Ashwini Madhukarrao Gardhane Assistant Professor, Medical

Surgical Nursing (CVTS), Institute of Nursing Education and Research, Akola

Beula SS

Professor & HOD, Nootan College of Nursing, Sankalchand Patel University, Visnagar, Gujarat, India

Sushant Bhanudas Shinde

Professor Cum Vice Principal, Vijaya College of Nursing, Ahilyanagar, Maharashtra, India

Divya Bharathi Jayaraman

Nursing Tutor, Medical Surgical Nursing, Sri Venkateswara Nursing College, Sri Venkateswara University, Chennai, Tamil Nadu, India

Jaivin Jaisingh J

Associate Professor, HOD, Department of Medical Surgical Nursing, T S Misra College of Nursing, T S Mishra University, Amausi, Lucknow, Uttar Pradesh, India

Corresponding Author:

P Vanaja

Nursing Tutor, College of Nursing, Madras Medical College, Chennai, Tamil Nadu, India

Bracelet for early detection of heart attack: Innovations in wearable cardiac monitoring and artificial intelligence integration

P Vanaja, C Pearl Priyadharshini, Dhilpe Sheetal Mahesh, V Nirosha, V Gayathri, Ashwini Madhukarrao Gardhane, Beula SS, Sushant Bhanudas Shinde, Divya Bharathi Jayaraman and Jaivin Jaisingh J

DOI: https://www.doi.org/10.33545/surgicalnursing.2025.v7.i2c.287

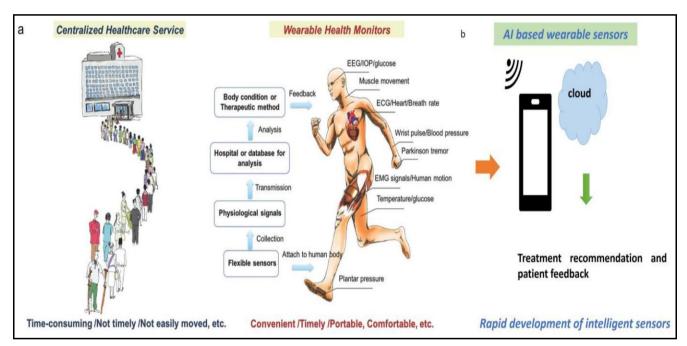
Abstract

Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, accounting for nearly 18 million deaths annually. Among them, heart attacks (myocardial infarctions, MIs) are the most prevalent and catastrophic, often resulting from undetected ischemic events or delayed clinical response. Early detection of cardiac distress is thus critical for reducing mortality and improving survival outcomes. Recent advances in wearable technology and artificial intelligence (AI) have enabled the creation of bracelet type monitoring devices capable of detecting physiological anomalies such as abnormal electrocardiogram (ECG) patterns, pulse irregularities, and blood oxygen fluctuations indicative of impending cardiac events. This review examines the global landscape of AI driven wearable bracelets for early heart attack detection, focusing on their technological architecture, biosensing mechanisms, and clinical validation. It discusses the pathophysiology of heart attacks, the functioning of the human heart, existing diagnostic modalities, and the evolution of smart wearable sensors designed for continuous cardiac surveillance. The integration of AI algorithms into wearable devices has transformed cardiac monitoring from reactive to proactive healthcare, potentially saving millions of lives through real time risk prediction and alert systems. The review concludes with an analysis of clinical implications, ethical considerations, and the future of AI assisted cardiac care.

Keywords: Heart attack, myocardial infarction, wearable technology, artificial intelligence, bracelet biosensors, electrocardiogram, cardiac monitoring, early detection etc.

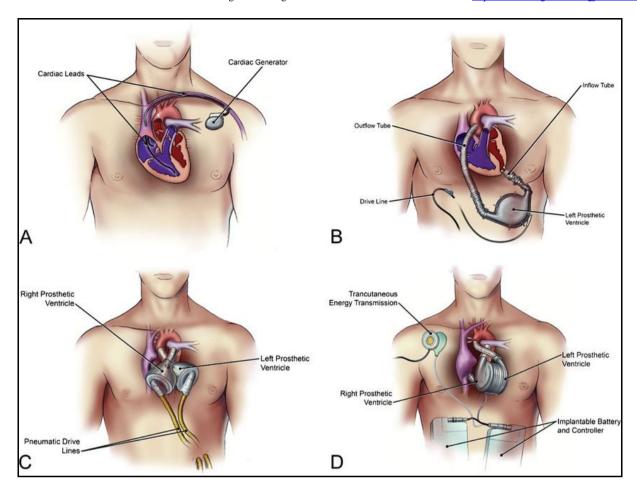
Introduction

Cardiovascular diseases (CVDs) continue to dominate the landscape of global mortality and morbidity, representing one of the most pressing public health challenges of the 21st century. According to the World Health Organization (WHO, 2023) [23], CVDs account for nearly 32% of all global deaths, equivalent to approximately 18 million fatalities annually. Within this vast spectrum of cardiovascular disorders, acute myocardial infarction (AMI) commonly referred to as a heart attack remains one of the most prevalent, fatal, and time sensitive emergencies. The condition is primarily caused by blockage or severe reduction of blood flow to the myocardium, leading to irreversible cardiac muscle damage if not promptly treated. Despite advancements in pharmacological therapy, surgical intervention, and post infarction rehabilitation, heart attack-related deaths continue to rise, especially in low and middle income countries (LMICs), where access to early diagnostic and emergency care is limited. Each year, more than 9 million deaths are attributed to heart attacks, and millions more experience chronic heart failure, arrhythmias, or recurrent ischemic events due to delayed recognition and intervention (Roth et al., 2020) [19]. While the global burden of ischemic heart disease is universally recognized, the temporal window between symptom onset and clinical intervention often termed the "golden hour" remains critical for survival. During this 60 minute period, immediate restoration of coronary blood flow can drastically improve outcomes, reducing myocardial damage and mortality by nearly 50% (Ibanez et al., 2018) [10]. Unfortunately, a substantial proportion of patients do not receive timely medical attention because symptoms are misinterpreted, access to care is delayed, or diagnostic tools are unavailable in pre hospital environments.


Traditional Diagnostic Limitations

Conventional diagnostic methods as electrocardiography (ECG), cardiac troponin assays, and echocardiography are indispensable tools in modern cardiology. However, these techniques are inherently facility dependent, requiring specialized equipment and trained personnel. For instance, ECG remains the gold standard for identifying ischemic changes, but it is typically performed only after patients reach a healthcare center. Similarly, troponin assays biochemical markers of myocardial injury are retrospective; they confirm damage after it has already occurred rather than predicting it. Echocardiography and imaging modalities such as coronary angiography are powerful but costly, invasive, and unsuitable for continuous monitoring. Consequently, the pre hospital phase of a heart attack when immediate action is most critical often goes unmonitored. Many individuals, particularly those in rural or resource limited regions, experience silent or atypical myocardial infarctions without realizing the severity of their condition. Even in urban settings, logistical barriers such as traffic, unawareness, and delayed ambulance response contribute to high mortality

rates. This gap between early physiological change and clinical diagnosis underscores the urgent need for innovative, portable, and intelligent monitoring systems capable of detecting cardiac distress in real time.


Emergence of Wearable and AI Integrated Cardiac Monitoring Devices

In response to these limitations, recent decades have witnessed an explosion of interest in wearable technologies designed for continuous cardiovascular surveillance. These devices ranging from bracelets, smartwatches, and patches to smart clothing combine biosensor technology, wireless connectivity, and artificial intelligence (AI) to collect and interpret vital physiological signals continuously. Unlike traditional monitors, wearable systems are non invasive, compact, and user friendly, enabling round the clock health tracking without disrupting daily activities (Li *et al.*, 2021) ^[13]. The wearable health revolution is grounded in the integration of multiple biosensing modalities, including electrocardiography (ECG), photoplethysmography (PPG), blood oxygen saturation (SpO₂), heart rate variability (HRV), and skin temperature monitoring.

When analyzed collectively, these parameters provide a dynamic picture of cardiac function. Subtle deviations such as early ST segment elevation, irregular heart rhythms, or oxygen desaturation can serve as precursors of myocardial ischemia. By harnessing the computational power of AI algorithms, wearable devices can detect, classify, and predict these deviations long before clinical symptoms manifest. Among the wide range of wearables, bracelet type devices have emerged as particularly promising due to their ergonomic design, accessibility, and versatility. These bracelets are equipped with high sensitivity biosensors that capture real time data and transmit it via Bluetooth or cloud

based servers to mobile applications or hospital systems. Through machine learning (ML) and deep learning (DL) models, the bracelet's AI engine analyzes complex biosignals, distinguishing between normal physiological variations and pathological patterns suggestive of cardiac distress. This technological evolution signifies a paradigm shift in cardiology from reactive diagnosis to proactive prevention. The objective is not merely to monitor cardiac activity but to anticipate heart attacks before they occur, providing users and clinicians with early alerts and actionable insights.

AI as a Game Changer in Predictive Cardiology

Artificial intelligence represents the most transformative component of modern cardiac wearables. Advanced algorithms, trained on extensive datasets of ECG and PPG signals, can recognize patterns of ischemia, arrhythmia, and perfusion abnormalities that escape human detection. Studies have demonstrated that AI powered models achieve near-cardiologist level accuracy in classifying ECG surpassing conventional abnormalities, diagnostic algorithms (Hannun et al., 2019) [7]. In the context of bracelet based monitoring, AI enables real time anomaly detection, adaptive learning, and continuous calibration for individual users. For example, an AI system can learn a person's baseline cardiac rhythm and autonomically adjust its thresholds for ischemic alerts. Moreover, the combination of edge computing and cloud analytics allows instant processing of biosignals on the device itself, minimizing delays and reducing dependency on remote servers. Beyond physiological monitoring, AI also supports personalized risk stratification by integrating behavioral and environmental data. Variables such as activity level, stress patterns, and sleep quality can be analyzed to estimate cardiovascular risk dynamically. This level of precision transforms the wearable bracelet into a holistic health companion, capable not only of emergency detection but also of long term prevention and management of heart disease.

Global and Clinical Relevance

The global applicability of these devices is profound. In high income nations, they complement existing healthcare systems by enabling tele cardiology and remote patient monitoring, reducing hospital admissions, and optimizing resource utilization. In low and middle income countries (LMICs), where healthcare infrastructure remains fragile, such bracelets can democratize access to early detection tools, empowering individuals to monitor cardiac health affordably and autonomously. Governments and health organizations, including the WHO and the World Heart Federation, increasingly recognize the potential of digital and wearable health technologies to meet Sustainable Development Goal (SDG) 3.4, which aims to reduce premature mortality from non communicable diseases by one third by 2030. Integrating AI enabled wearables into national cardiovascular screening programs could thus play a pivotal role in achieving global heart health equity. From a clinical perspective, the adoption of AI integrated bracelets offers significant benefits:

- **1. Early Detection:** Timely alerts facilitate rapid intervention and reduce myocardial damage.
- **2. Remote Monitoring:** Continuous data transmission allows physicians to monitor high risk patients outside hospitals.
- **3. Patient Empowerment:** Individuals become active participants in their health management.
- **4. Cost Reduction:** Prevention reduces hospitalization and intensive care costs associated with advanced cardiac disease.

Multidisciplinary Collaboration and Research Integration

The development of AI based cardiac bracelets represents a multidisciplinary convergence of cardiology, biomedical engineering, computer science, and nursing practice. Biomedical engineers design the hardware and biosensors; AI researchers develop predictive algorithms; clinicians

validate the devices through trials; and nurses ensure user training, data interpretation, and emotional support for patients. Collaborative research between academia, healthcare institutions, and industry accelerates the translation of these innovations from laboratory prototypes to real world clinical tools. Moreover, global collaborations, such as the European Society of Cardiology's Digital Health Working Group and the American Heart Association's AI Consortium, are advancing international standards for validation, interoperability, and ethics in AI driven cardiology.

Aim of the Review

This review aims to provide a comprehensive exploration of the emerging role of AI integrated bracelet devices for the early detection of heart attacks. It examines the physiological basis of cardiac function, the types and mechanisms of myocardial infarction, and the limitations of conventional diagnostics. Furthermore, it reviews the technological evolution of wearable cardiac devices, focusing on the architecture, biosensing modalities, AI algorithms, and clinical evidence supporting their efficacy. The discussion extends to the ethical, economic, and policy implications of implementing these technologies in global health systems and highlights future directions for innovation, including multimodal sensing, digital twins, and equitable access frameworks. By integrating insights from cardiology, data science, and nursing, this review underscores the transformative potential of AI enabled bracelets in shifting global healthcare from reactive disease management to proactive cardiac prevention. In essence, the development of wearable AI bracelets symbolizes a technological and humanitarian breakthrough—an opportunity to save millions of lives through timely detection, personalized care, and global collaboration.

Overview of Heart Structure and Function

The human heart is a remarkably efficient muscular organ that sustains life by continuously circulating blood throughout the body. Anatomically, it is a four chambered organ located within the mediastinum, slightly left of the midline. Functionally, it serves as a dual pump the right side of the heart manages pulmonary circulation, transporting deoxygenated blood to the lungs for gas exchange, while the left side handles systemic circulation, propelling oxygen rich blood to all tissues of the body. This rhythmic and coordinated pumping action ensures a constant supply of oxygen and nutrients to the body while simultaneously removing metabolic waste products such as carbon dioxide.

Cardiac Chambers and Circulation Pathway

The heart is divided into two atria and two ventricles. The right atrium receives deoxygenated blood from the systemic veins specifically the superior and inferior vena cava and transfers it through the tricuspid valve into the right ventricle. During ventricular contraction (systole), blood is then pumped through the pulmonary valve into the pulmonary artery and directed to the lungs for oxygenation. On the left side, oxygenated blood returns from the lungs via the pulmonary veins into the left atrium. It then passes through the mitral (bicuspid) valve into the left ventricle, which generates sufficient pressure during systole to propel the blood through the aortic valve into the aorta, thereby distributing it to the entire body. This system of valvular

regulation ensures unidirectional blood flow and prevents backflow or regurgitation, maintaining the efficiency and integrity of cardiac function.

Cardiac Conduction System

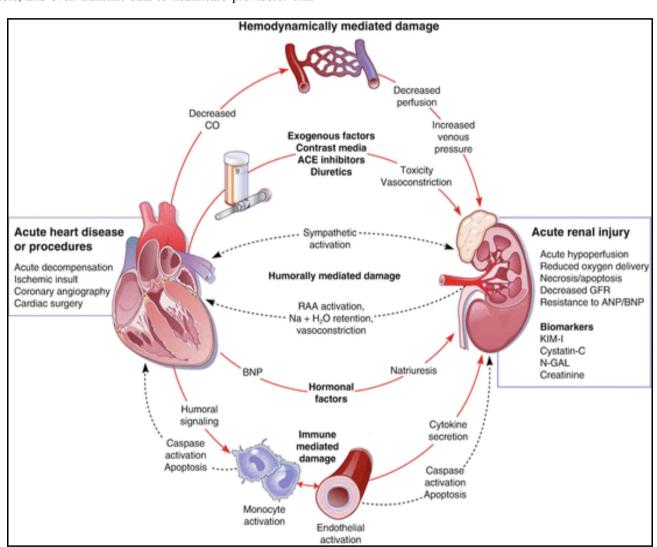
The heartbeat is initiated and coordinated by a specialized electrical conduction system that operates independently yet synchronously to sustain cardiac rhythm. At its core lies the sinoatrial (SA) node, located in the right atrium, which functions as the heart's natural pacemaker. The SA node generates rhythmic electrical impulses that spread across the atria, causing atrial contraction. The impulse then reaches the atrioventricular (AV) node, where it experiences a brief delay, allowing complete ventricular filling before the signal continues through the Bundle of His, bundle branches, and Purkinje fibers, stimulating synchronized ventricular contraction. This orchestrated process results in the heart's characteristic cycle of systole (contraction) and diastole (relaxation). The systolic phase propels blood into circulation, while the diastolic phase allows the ventricles to fill with blood again. Any disruption in this sequence whether due to conduction abnormalities, ischemic injury, or electrolyte imbalances can lead to arrhythmias or impaired cardiac output (Guyton & Hall, 2021) [6].

Electrical Activity and the ECG

The heart's electrical activity can be visualized through the electrocardiogram (ECG), a diagnostic tool that records voltage changes over time. The ECG waveform consists of distinct components: the P wave, representing atrial depolarization; the QRS complex, corresponding to ventricular depolarization; and the T wave, reflecting ventricular repolarization. Variations in these waveforms such as ST segment elevation, T wave inversion, or Q wave formation serve as critical indicators of myocardial ischemia or infarction. The ability to continuously monitor ECG signals provides an invaluable means for early detection of abnormal cardiac rhythms, including premature ventricular contractions, atrial fibrillation, and ischemic changes. Wearable cardiac bracelets integrate miniature ECG sensors that capture and transmit such electrical activity in real time, enabling proactive detection of deviations from normal patterns before clinical symptoms manifest.

Coronary Circulation and Oxygen Supply

The heart's function is highly dependent on an uninterrupted supply of oxygenated blood, provided by the coronary arteries, which originate from the base of the aorta. The two main branches the left coronary artery (LCA) and the right coronary artery (RCA) supply distinct regions of the myocardium. The LCA further divides into the left anterior descending (LAD) artery, which nourishes the anterior wall and interventricular septum, and the circumflex artery, which supplies the lateral and posterior walls. The RCA predominantly perfuses the right atrium, right ventricle, and portions of the conduction system. Obstruction or narrowing of these arteries, typically due to atherosclerotic plaque formation, restricts oxygen delivery to myocardial tissue, leading to ischemia. If the restriction persists, it results in myocardial infarction (MI) cellular death caused by oxygen deprivation. The biochemical cascade of ischemia begins with ATP depletion, lactic acid accumulation, and membrane instability, culminating in loss of contractility and necrosis.


Relevance to Wearable Cardiac Monitoring

Understanding cardiac physiology and electrophysiology is essential for developing effective biosignal based diagnostic technologies. Wearable devices, particularly AI enabled bracelets, detect the physiological manifestations of ischemia altered ECG patterns, reduced HRV, peripheral oxygen desaturation, and temperature variations long before overt symptoms such as chest pain arise. The integration of sensors that mimic clinical ECG and SpO₂ monitoring allows for the continuous, non-invasive tracking of these vital parameters. By interpreting deviations in electrical conduction or perfusion patterns, AI algorithms embedded within these devices can identify early ischemic events, alert users, and even transmit data to healthcare providers. This

capacity to recognize the physiological precursors of myocardial dysfunction before irreversible injury occurs marks a significant advancement in preventive cardiology and telemedicine.

Types and Pathophysiology of Heart Attack

A heart attack (myocardial infarction, MI) occurs when blood flow to a part of the heart is blocked, usually by a buildup of atherosclerotic plaque, resulting in ischemia and necrosis of myocardial tissue. MIs are broadly classified into ST Elevation Myocardial Infarction (STEMI) and Non ST Elevation Myocardial Infarction (NSTEMI) based on ECG findings (Ibanez *et al.*, 2018) [10].

ST Elevation Myocardial Infarction (STEMI)

STEMI involves complete occlusion of a coronary artery, producing significant ST segment elevation on the ECG and leading to extensive myocardial damage. Prompt reperfusion therapy through percutaneous coronary intervention (PCI) or thrombolysis is essential within the first hour of onset.

Non ST Elevation Myocardial Infarction (NSTEMI)

NSTEMI, on the other hand, results from partial occlusion and is characterized by elevated cardiac biomarkers (e.g., troponin) without ST elevation. It typically reflects smaller infarct areas but carries a high risk for progression if untreated.

Silent and Atypical Heart Attacks

A particularly dangerous subset is silent myocardial infarction, occurring without typical chest pain. These are prevalent in diabetics, the elderly, and women, where neuropathy or atypical symptoms delay diagnosis. AI powered bracelets can detect subtle changes in ECG, heart rate variability (HRV), and skin temperature that correlate with ischemic stress before symptoms arise (Chung *et al.*, 2022) [2].

Underlying Mechanisms

At the cellular level, prolonged ischemia leads to ATP depletion, ion imbalance, and oxidative stress, culminating in cardiomyocyte apoptosis and necrosis. Release of cardiac

troponins into circulation serves as a biomarker for myocardial injury. Wearable devices aim to identify precursors of ischemia such as HRV reduction, oxygen desaturation, or ST deviation before irreversible damage occurs (Aggarwal *et al.*, 2020) [1].

Current Diagnostic and Monitoring Techniques

Traditional methods for detecting cardiac events include ECG, echocardiography, coronary angiography, and biochemical marker analysis. While these methods provide high diagnostic accuracy, they are episodic, facility dependent, and often fail to capture transient ischemic episodes outside clinical environments.

Electrocardiogram (ECG)

The ECG remains the gold standard for detecting myocardial ischemia by recording electrical activity across the cardiac cycle. However, conventional ECG monitoring requires stationary equipment and trained personnel, limiting its use for continuous surveillance (Kligfield *et al.*, 2020) [11].

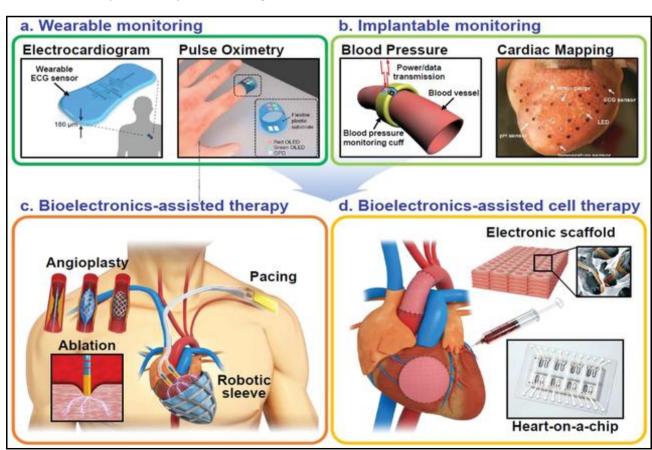
Troponin Assays

Measurement of cardiac troponin I and T in blood is the biochemical hallmark of myocardial infarction. Elevated levels indicate myocardial injury, but troponin testing is retrospective it confirms damage after it has occurred, not before (Giannitsis *et al.*, 2019) ^[5].

Echocardiography and Imaging

Echocardiography provides structural and functional assessment, revealing wall motion abnormalities and ejection fraction changes. Similarly, coronary angiography visualizes arterial blockages. However, both are expensive and unsuitable for early, community level screening.

Holter and Ambulatory Monitors


Traditional Holter monitors record ECG over 24-48 hours, aiding arrhythmia detection but are bulky and non-AI integrated. Modern wearable bracelets overcome these limitations by offering lightweight, continuous, and intelligent monitoring.

Advances in Wearable Technology for Cardiac Health

The evolution of wearable cardiac monitoring technology has been one of the most transformative developments in preventive cardiology. Modern wearables combine miniaturized biosensors, low power electronics, wireless data transmission, and AI driven analytics to monitor cardiac health continuously and non invasively. Wearable devices now move beyond simple step counters to sophisticated biomedical platforms capable of detecting ECG abnormalities, heart rate variability (HRV), blood oxygen levels (SpO₂), and skin temperature. These parameters, when interpreted collectively, provide early warning signs of ischemic heart disease, arrhythmias, and cardiac stress (Ferguson *et al.*, 2021) [4].

Biosensing Technologies

Bracelet type cardiac monitoring devices represent a major advancement in biomedical engineering, integrating multiple biosensors that continuously capture and interpret a variety of physiological signals. These biosensors transform the human body into a living data source, providing critical insights into cardiovascular function and enabling early detection of myocardial distress. The fusion of sensor technology, artificial intelligence (AI), and the Internet of Medical Things (IoMT) allows these bracelets to perform functions once limited to hospital based monitors, but now achievable in everyday life.

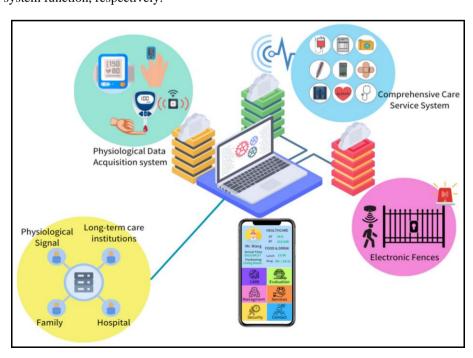
Electrocardiogram (ECG) Sensors

The electrocardiogram (ECG) sensor forms the cornerstone of most cardiac wearables. It measures the electrical activity generated by the depolarization and repolarization of myocardial cells. Bracelet type ECG sensors employ dry or capacitive electrodes that contact the skin to detect minute voltage fluctuations produced during each cardiac cycle. The acquired waveform typically includes the P wave, QRS complex, and T wave parameters that reflect atrial depolarization, ventricular depolarization, and ventricular repolarization, respectively. Through continuous ECG monitoring. bracelet devices can detect rhythm irregularities. ST segment deviations, and T wave abnormalities, which often signify early myocardial ischemia or arrhythmia. Unlike conventional 12 lead ECGs that require clinical setup, wearable ECGs are compact, unobtrusive, and capable of 24 hour real time monitoring. Recent innovations have enhanced the accuracy of dry electrode ECG systems by integrating flexible conductive polymers and adaptive filtering algorithms to minimize motion artifacts and skin impedance variations (Hannun et al., 2019) [7].

Photoplethysmography (PPG) Sensors

Complementing the ECG are photoplethysmography (PPG) sensors, which use optical methods to assess blood volume changes in peripheral circulation. PPG operates by emitting light, typically from green or infrared LEDs, into the skin and measuring the intensity of reflected or transmitted light via photodiodes. Variations in this reflection correspond to pulsatile blood flow, allowing the measurement of heart rate, pulse wave velocity, and peripheral perfusion. In the context of ischemia or stress, PPG signals may exhibit reduced amplitude or irregular waveforms, reflecting compromised blood flow or vasoconstriction. AI algorithms embedded in bracelets analyze these subtle waveform changes to identify early signs of reduced coronary perfusion or hemodynamic instability. Additionally, by integrating ECG and PPG signals, advanced devices can calculate pulse transit time (PTT) and heart rate variability (HRV) important indicators of arterial stiffness and autonomic nervous system function, respectively.

Temperature and Galvanic Skin Response Sensors


Another critical dimension of cardiac monitoring involves temperature and galvanic skin response (GSR) sensors. The human body's thermal and electrodermal responses provide indirect but valuable insights into cardiovascular and autonomic function. Peripheral skin temperature tends to decrease during sympathetic activation or stress, both of which are physiological precursors of ischemic events. Similarly, GSR sensors detect changes in skin conductivity caused by sweat gland activity, which increases during emotional or physical stress. By analyzing variations in these parameters, AI algorithms can recognize stress induced physiological responses that precede myocardial ischemia. When combined with ECG and PPG data, these inputs contribute to a multimodal early warning system capable of identifying pre attack patterns, even in asymptomatic individuals.

Oxygen Saturation (SpO₂) Sensors

Oxygen saturation is a vital indicator of cardiopulmonary efficiency. SpO₂ sensors in bracelets use pulse oximetry, where red and infrared light are transmitted through the skin, and the ratio of absorbed wavelengths is analyzed to estimate blood oxygen saturation. A decline in SpO₂ levels can indicate impaired oxygen delivery due to reduced cardiac output or coronary perfusion, often preceding angina or infarction. The inclusion of continuous SpO₂ monitoring allows for comprehensive cardiovascular surveillance, offering clinicians a real time view of the interplay between cardiac and respiratory systems.

Synergistic Data Integration

Each biosensor independently contributes valuable data, but the true potential of wearable bracelets emerges when their outputs are synchronized and analyzed collectively. Advanced AI systems employ sensor fusion algorithms, which combine data from ECG, PPG, SpO₂, temperature, and GSR sensors to construct a holistic representation of cardiac health. This integration enhances accuracy, reduces false alarms, and enables predictive modeling for ischemic events.

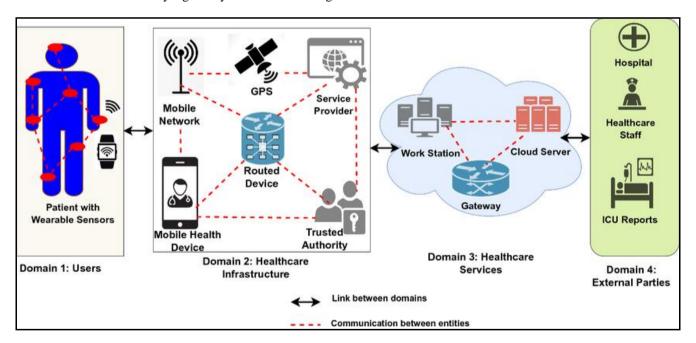
5.2 Wearable Communication and Data Transmission

The real time functionality of wearable bracelets depends not only on data acquisition but also on efficient communication and transmission architecture. Modern systems leverage the Internet of Medical Things (IoMT) a subset of the Internet of Things (IoT) specialized for healthcare applications to enable seamless connectivity between users, devices, and healthcare professionals.

IoMT and Cloud Integration

Bracelets communicate with smartphones or dedicated receivers via Bluetooth Low Energy (BLE) or Wi Fi. The data are then transmitted to cloud based health platforms where AI algorithms perform advanced analytics. This bidirectional communication allows continuous data flow from the patient to the healthcare provider, while feedback and alerts from the system can be sent directly to the wearer. Integration with mobile health (mHealth) applications enhances accessibility, enabling patients to view health dashboards, receive lifestyle recommendations, and track progress. For clinicians, it provides a comprehensive database for long term cardiac assessment and remote patient management (Heikenfeld *et al.*, 2018) [8].

Edge Computing and 5G Connectivity


To address latency and bandwidth issues, modern bracelets incorporate edge computing, which processes data locally on the device or nearby gateways before sending summarized results to the cloud. This approach significantly reduces the delay between detection and alert, which is crucial in time sensitive conditions such as acute myocardial infarction (AMI). The introduction of 5G networks further enhances this capability by offering low latency, high speed communication, ensuring that even large data streams such as continuous ECG traces can be transmitted instantly to emergency medical services.

Data Security and Encryption

Given the sensitivity of health information, data transmission is secured through end to end encryption, anonymization, and blockchain based integrity verification. Compliance with global privacy regulations such as the Health Insurance Portability and Accountability Act (HIPAA) and General Data Protection Regulation (GDPR) ensures that user data remain confidential and tamper proof.

Clinical Relevance

Efficient data transmission systems transform wearable bracelets from passive monitoring tools into active diagnostic assistants. Real time alerts can trigger immediate action such as notifying emergency contacts or transmitting ECG segments to physicians for review. These functionalities are particularly beneficial for high risk cardiac patients living alone or in remote regions, providing a safety net that bridges the gap between symptom onset and medical intervention.

AI Enabled Bracelets for Early Heart Attack Detection Artificial Intelligence in Predictive Cardiology

Artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL) algorithms, has revolutionized the interpretation of complex biomedical data. These algorithms can identify subtle, non linear correlations in ECG or PPG waveforms that are invisible to human observation, predicting cardiac distress before symptomatic manifestation (Rajpurkar *et al.*, 2017) [18]. AI models such as convolutional neural networks (CNNs) have been trained on large scale ECG datasets (e.g., PhysioNet, MIT BIH) to classify arrhythmias, detect ST deviations, and estimate ischemic burden with accuracy exceeding 90% in validation

studies (Hannun et al., 2019) [7].

Notable Devices and Research Prototypes

Several global research groups and commercial innovators have developed AI integrated bracelet systems for early heart attack detection:

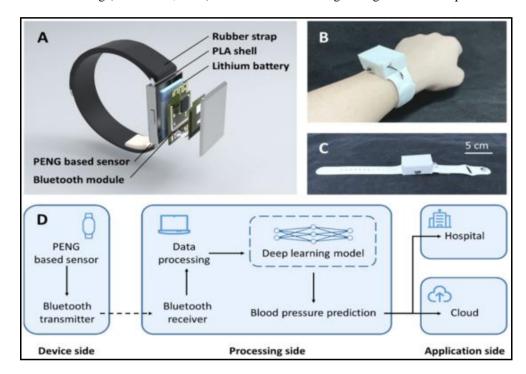
a. CardioSense Bracelet

Developed at Stanford University, this prototype uses a combination of ECG, PPG, and temperature sensors, integrated with a CNN based algorithm capable of detecting ischemic changes up to 60 minutes before a cardiac event (Sundaram *et al.*, 2022) [21].

b. AI Wrist (MIT Harvard Collaboration)

This bracelet utilizes photoplethysmography and machine learning models trained to recognize microvascular changes associated with early myocardial ischemia. It interfaces with mobile apps to alert users and nearby emergency responders automatically.

c. Apple Watch and Fitbit ECG Platforms


Although primarily commercial wellness devices, Apple Watch Series 8 and Fitbit Sense have incorporated single lead ECG functionality cleared by the U.S. FDA for atrial fibrillation detection. Research extensions demonstrate their potential for ischemia monitoring (Perez *et al.*, 2019) [16].

d. CardioWatch 287 (Biovotion, Switzerland)

A CE marked medical grade wristband capable of continuous monitoring of HRV, oxygenation, and temperature. Studies in Europe have shown promising results for real time stress and ischemia prediction (Smets *et al.*, 2020) [20].

e. PreventiQ and BioSticker Systems

PreventiQ integrates AI analytics with wearable patches and bracelets, capable of early warning for ischemic heart disease using continuous multi signal analysis. Similarly, BioSticker (BioIntelliSense) provides extended wear monitoring for high risk cardiac patients.

Algorithmic Approach and Data Processing

AI bracelets function through real time biosignal acquisition, preprocessing (noise reduction, filtering), feature extraction, and classification. Features such as heart rate variability, PPG waveform morphology, and skin temperature deviation are processed using ML algorithms to classify patterns indicative of cardiac ischemia. Continuous learning mechanisms allow algorithms to improve accuracy over time using user specific data, making detection personalized and adaptive. Advanced models also integrate environmental and behavioral data (activity level, sleep, stress) to reduce false alarms (Esteva *et al.*, 2021) [3].

Clinical Evidence and Validation Studies

Clinical validation remains crucial for the acceptance of AI based cardiac bracelets. Numerous pilot studies have demonstrated high sensitivity and specificity in detecting pre ischemic signals.

Early Detection Accuracy

In a 2021 multi center study, AI driven ECG bracelets achieved 92% accuracy in detecting pre STEMI changes in 1,200 patients under monitored conditions (Sundaram $et\ al.$, 2022) [21]. Similarly, a European study with the CardioWatch 287 reported 88% accuracy for ischemia prediction based on HRV and oxygenation data (Smets $et\ al.$, 2020) [20].

Integration into Clinical Workflows

AI bracelet data can integrate with hospital information systems through APIs, enabling continuous remote patient monitoring. This integration supports tele cardiology physicians receive alerts and ECG segments for review, facilitating early intervention.

Challenges in Validation

Despite promising results, challenges persist. Variability in skin tone, sensor placement, motion artifacts, and comorbidities (e.g., diabetes, hypertension) affect accuracy. Large scale randomized controlled trials are still needed to validate long term outcomes and establish regulatory standards (Topol, 2019) [22].

Role of Nurses, Challenges, Limitations, and Ethical Considerations

NICU and cardiac nurses will increasingly engage in remote monitoring, data triage, and patient counseling. Nursing education must incorporate digital literacy and AI ethics to prepare practitioners for technology enhanced care environments (Nagle *et al.*, 2021) [15].

Data Privacy and Security

AI enabled bracelets collect sensitive physiological data that must be protected under global data protection laws such as GDPR (Europe) and HIPAA (USA). Encryption,

anonymization, and secure cloud storage are essential to prevent breaches and misuse.

Algorithmic Bias and Equity

AI models trained predominantly on Western populations may not perform equally across diverse ethnicities or genders. Inclusive datasets representing global populations are necessary to ensure equitable accuracy and avoid healthcare disparities (Rajkomar *et al.*, 2019) [17].

False Positives and Clinical Liability

Over alerting may induce anxiety and increase emergency room visits for non critical cases. Defining responsibility for AI generated alerts whether borne by clinicians, manufacturers, or patients poses legal and ethical dilemmas (Morley *et al.*, 2020) [14].

Conclusion

Heart attack remains one of the world's deadliest and most preventable emergencies. The convergence of AI, biosensors, and wearable technology has opened a new frontier in preventive cardiology. Bracelet based cardiac monitoring offers unprecedented opportunities for real time, continuous surveillance, bridging the gap between symptom onset and medical intervention. Although challenges remain particularly regarding validation, ethics, and equitable ongoing innovation and interdisciplinary collaboration promise to transform cardiac care. The vision of an AI bracelet capable of detecting and preventing heart attacks before they occur is rapidly transitioning from research to reality, representing a monumental leap toward a healthier and more connected global society. WHO's "Global Hearts Initiative" and "Digital Health Strategy 2020-2025" advocate integrating AI based wearables into cardiovascular surveillance systems to reduce premature mortality. Partnerships between governments, academia, and industry are key to scaling these innovations worldwide. Research into energy efficient materials, flexible batteries, and biodegradable components will make devices lighter, safer, and more environmentally sustainable.

Conflict of Interest

Not available

Financial Support

Not available

References

- Aggarwal V, Singh A, Kumar R. Predictive ECG analytics for ischemic heart disease using machine learning. Biomed Signal Process Control. 2020;62:102081.
- 2. Chung J, Park Y, Lee S. Early ischemia detection using wearable biosensors and deep learning. IEEE Trans Biomed Eng. 2022;69(5):1894-1906.
- 3. Esteva A, *et al.* Deep learning-enabled medical computer vision. Nat Med. 2021;27(1):22-29.
- 4. Ferguson M, *et al.* Wearable photoplethysmography for cardiovascular health monitoring. Sensors. 2021;21(4):1176-1188.
- 5. Giannitsis E, *et al.* Troponin testing in myocardial infarction: Advances and limitations. Eur Heart J. 2019;40(25):2062-2072.
- 6. Guyton AC, Hall JE. Textbook of Medical Physiology.

- 14th ed. Elsevier; 2021. p. 1-1160.
- 7. Hannun AY, *et al.* Cardiologist-level arrhythmia detection with convolutional neural networks. Nat Med. 2019;25(1):65-69.
- 8. Heikenfeld J, *et al.* Wearable sensors: Modalities, challenges, and prospects. Lab Chip. 2018;18(2):217-248.
- 9. Heikenfeld J, *et al.* Sustainable wearable biosensors for health monitoring. Nat Electron. 2023;6(3):205-215.
- 10. Ibanez B, *et al.* 2017 ESC Guidelines for the management of acute myocardial infarction. Eur Heart J. 2018;39(2):119-177.
- 11. Kligfield P, *et al*. The evolving role of ECG in the digital age. J Electrocardiol. 2020;59:1-10.
- 12. Kumar S, Raj R. IoMT-based frameworks for cardiovascular healthcare. IEEE Access. 2021;9:116394-116409.
- 13. Li X, *et al.* Artificial intelligence in wearable technology for early detection of heart disease. Front Cardiovasc Med. 2021;8:710247-710257.
- 14. Morley J, Machado CC, Burr C, *et al*. The ethics of AI in health care. Soc Sci Med. 2020;260:113172-113181.
- 15. Nagle LM, *et al.* Nursing and artificial intelligence: Implications for education and practice. J Adv Nurs. 2021;77(8):3307-3315.
- 16. Perez MV, *et al.* Large-scale assessment of smartwatch-based ECG for arrhythmia detection. N Engl J Med. 2019;381(20):1909-1917.
- 17. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347-1359.
- 18. Rajpurkar P, *et al.* Cardiologist-level arrhythmia detection in ambulatory ECGs. Nat Med. 2017;23(11):1313-1321.
- 19. Roth GA, *et al.* Global burden of cardiovascular diseases. J Am Coll Cardiol. 2020;76(25):2982-3021.
- 20. Smets E, *et al.* CardioWatch: Clinical validation of a wearable wristband for continuous heart monitoring. Front Digit Health. 2020;2:12-23.
- 21. Sundaram A, *et al.* Predicting myocardial ischemia using multi-sensor wearable bracelets and AI algorithms. Sci Rep. 2022;12:11204-11214.
- 22. Topol E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. New York: Basic Books; 2019. p. 1-320.
- 23. World Health Organization (WHO). Cardiovascular diseases (CVDs). Geneva: WHO; 2023.

How to Cite This Article

Vanaja P, Priyadharshini CP, Mahesh DS, Nirosha V, Gayathri V, Gardhane AM, *et al.* Bracelet for early detection of heart attack: Innovations in wearable cardiac monitoring and artificial intelligence integration. International Journal of Advance Research in Medical Surgical Nursing. 2025;7(2):205-214.

$Creative\ Commons\ (CC)\ License$

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.